高一数学知识点总结

时间: 07-28 作者:高原 栏目:总结

1、集合

2、函数

3、基本初等函数

4、立体几何初步

5、平面解析几何初步

6、基本初等函数

7、平面向量

8、三角恒等变换

9、解三角形

10、数列

11、不等式

1集合

一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母

集合的分类:

并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)

注:空集包含于任何集合,但不能说“空集属于任何集合

注:空集属于任何集合,但它不属于任何元素。

某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

集合的性质:

确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。

互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。

无序性:{a,b,c}{c,b,a}是同一个集合

集合有以下性质:若A包含于B,则A∩B=A,A∪B=B

常用数集的符号:

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N

(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)

(3)全体整数的集合通常称作整数集,记作Z

(4)全体有理数的集合通常简称有理数集,记作Q

(5)全体实数的集合通常简称实数集,级做R

集合的运算:

1、交换律

A∩B=B∩A

A∪B=B∪A

2、结合律

(A∩B)∩C=A∩(B∩C)

(A∪B)∪C=A∪(B∪C)

3、分配律

A∩(B∪C)=(A∩B)∪(A∩C)

A∪(B∩C)=(A∪B)∩(A∪C)

例题

已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},且A∩B={-3},求实数a的值、

∵Q95;A∩B={-3}

∴Q95;-3∈B.

①若a-3=-3,则a=0,则A={0,1,-3},B={-3,-1,1}

∴Q95;A∩B={-3,1}与∩B={-3}矛盾,所以a-3≠-3.

②若2a-1=-3,则a=-1,则A={1,0,-3},B={-4,-3,2}

此时A∩B={-3}符合题意,所以a=-1、

  • 分页 >>
为你推荐