直线与平面的平行的判定教学反思(2)
时间: 07-17
作者:冯志轩
栏目:反思
“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法的第一节课,因此本节课的学习对发展学生的空间观念和逻辑思维能力是非常重要的。
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理。通过问题情境的层层设置,引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的教学重点之一是:线面平行判定定理的引入与理解。
我设置了这样的问题情境:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?学生会举出日光灯与天花板,电线杆与墙面,转动的门等等。
我又设置了很贴进生活的三个问题情境:
1.老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行;
2.直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。
3.有一块木料如图, p为面bcef内一点,
要求过点p在平面bcef内画一条直线和平面abcd平行,
那么应如何画线?
设置这样动手实践的问题情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。然后引导学生从中抽象概括出定理。
本节课的教学重点之二是:线面平行判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。我设计了想一想、证一证、练一练等问题探究环节,使学生能从易到难,由浅入深地强化对定理的认识。
首先我设计了一组概念辨析题,设计这组问题的目的是强调定理中三个条件的重要性。
对“证一证”这一问题环节中我采用一题多变、一题多解的变式教学,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力,有利于培养学生思维的广阔性与深刻性。
实际教学中练一练2未在课堂上完成。
本节课的设计我还注重训练学生数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
课后,我把练一练2作为作业布置给学生,我很高兴地看到了学生用了两种解法解决问题,个人认为这节课的教学效果不错。
反思四:直线与平面的平行的判定教学反思
本人于20xx学年第一学期第十一周周五下午代表市89中高一数学备课组在113中学上了一节区内研讨课,课后老师们进行了评议。本人非常感谢各 位老师对本节课提出的宝贵的建议和意见,其实,老师们认真听我这位新老师上课,课后积极评课,对于我这位刚走上讲台不久的新老师来说是一种莫大的鼓励。现 本人就课堂教学实录以及课后评议的情况结合教学设计反思如下:
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理。通过问题情境的层层设置,引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的教学重点之一是:线面平行判定定理的引入与理解。
我设置了这样的问题情境:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?学生会举出日光灯与天花板,电线杆与墙面,转动的门等等。
我又设置了很贴进生活的三个问题情境:
1.老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行;
2.直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。
3.有一块木料如图, p为面bcef内一点,
要求过点p在平面bcef内画一条直线和平面abcd平行,
那么应如何画线?
设置这样动手实践的问题情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。然后引导学生从中抽象概括出定理。
本节课的教学重点之二是:线面平行判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。我设计了想一想、证一证、练一练等问题探究环节,使学生能从易到难,由浅入深地强化对定理的认识。
首先我设计了一组概念辨析题,设计这组问题的目的是强调定理中三个条件的重要性。
对“证一证”这一问题环节中我采用一题多变、一题多解的变式教学,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力,有利于培养学生思维的广阔性与深刻性。
实际教学中练一练2未在课堂上完成。
本节课的设计我还注重训练学生数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
课后,我把练一练2作为作业布置给学生,我很高兴地看到了学生用了两种解法解决问题,个人认为这节课的教学效果不错。
反思四:直线与平面的平行的判定教学反思
本人于20xx学年第一学期第十一周周五下午代表市89中高一数学备课组在113中学上了一节区内研讨课,课后老师们进行了评议。本人非常感谢各 位老师对本节课提出的宝贵的建议和意见,其实,老师们认真听我这位新老师上课,课后积极评课,对于我这位刚走上讲台不久的新老师来说是一种莫大的鼓励。现 本人就课堂教学实录以及课后评议的情况结合教学设计反思如下: