直线的方程教学反思(2)
时间: 07-14
作者:姜光华
栏目:反思
第二需要设置梯度,逐步提高难度。由于本节课面对的对象,而且这是直线方程的第一节课,所以设置的内容还是简单易懂的,但是以后的课程中难度要求还是需要逐步提高综合应用能力,这需要在以后的课程中逐步贯彻。
反思三:直线的方程教学反思
直线方程的教学是在学习了直线的倾斜角和斜率公式之后推导引入直线的点斜式方程,进一步延伸出其他形式的直线方程和相互转化,为下面直线方程的应用如中点公式、距离公式、直线和圆的位置关系等打下良好的基础。
以下是在课堂教学中的几点体会和建议:
(一)初步培养了学生平面解析几何的思想和一般方法。
在初中,学生熟知一次函数y=kx+b(也可以看成是二次方程)的图象是一条直线,但反过来任意画一条,要同学们写出方程表达式,学生刚开始会无从下手,从而激发学生学习的兴趣。随着教学的展开,让学生逐步形成平面解析几何的方法,如建立坐标啊,设点啊,建立关系式啊,得出方程啊等等,初步培养学生的平面解析几何思维,为后面学习圆、椭圆和相关圆锥曲线打下良好的基础。
(二)在教学中贯彻“精讲多练”的教学改革探索。
我们都知道,对于职中的学生,基础差,底子薄,理解能力差,动手能力差,要想让学生学有所得,最好的办法就是精讲多练,提高学生的动手能力。因此在教学中,我们通常是由练习引入,简单讲讲,一例一练,配以一定的巩固提高题,最后还有配套作业,做到每个内容经过三轮的练习,让学生能够很容易的掌握。
(三)注意数形结合的教学。
解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在教学中要注意这种数学思想的教学。每一种直线方程的讲解都进行画图演示,让学生对每一种直线方程所需的条件根深蒂固,如点斜式一定要点和斜率;斜截式一定要斜率和在y轴上的截距;截距式一定要两个坐标轴上的截距等等。并在直线方程的相互转化过程中也配以图形(请参考一般方程的课件)
(四)注重直线方程的承前启后的作用。
教材承接了初中函数的图像之后,并作为研究曲线(圆、圆锥曲线)之前,以之来介绍平面解析几何的思想和一般方法,可见本节内容所处的重要地位,学好直线对以后的学习尤为重要。事实上,教材在研究了直线的方程和讨论了直线的几何性质后,紧接着就以直线方程为基础,进一步讨论曲线与方程的一般概念。
反思四:直线的方程教学反思
在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,#p#副标题#e#即设直线的方程为y=kx+b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y=kx+b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y=kx+b.殊不知,如今行情已经变了,需要“与时俱进”一下了.由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧.另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的一种形式.作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.