È˽̰æ¾ÅÄ꼶ÉϲáÊýѧ×÷Òµ±¾µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©´ð°¸½Î÷Ê¡
1µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÒ»Ìâ´ð°¸
-3£»5
2µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚ¶þÌâ´ð°¸
y=-x2-2x+3
3µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÈýÌâ´ð°¸
y=x2-2x-3
4µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚËÄÌâ´ð°¸
y=x2/8-x/4+2»òy=-x2/8+3x*4+2
5µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÎåÌâ´ð°¸
½â£º¡ß¶þ´Îº¯Êýy=-x2+bx+cµÄ¶Ô³ÆÖáΪx=2£¬ÇÒ¾¹ýԵ㣬
¡àb=4£¬c=0£¬
¡ày=-x2+4x
6µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÁùÌâ´ð°¸
½â£ºÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x+1£©2-1£¬½«£¨1£¬0£©´úÈëµÃ
7µÚ¶þÊ®¶þÕÂ22.1.4¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏñºÍÐÔÖÊ£¨2£©µÚÆßÌâ´ð°¸
½â£ºÉèËùÇó¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¬
¡ß¶þ´Îº¯ÊýµÄͼÏñ¾¹ý£¨0£¬4£©£¬£¨1£¬3£©£¬£¨-1£¬4£©Èýµã£¬