解一元一次方程——去分母教学反思(2)
时间: 08-15
作者:李宝生
栏目:反思
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是 ① 解方程中的“去分母”, ② 根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:① 部分学生不会找各分母的最小公倍数,这点要适当指导,② 用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x-x+2=2,其中x+2没有加括号,弄错了符号。
反思四:解一元一次方程——去分母教学反思
本节课由一道著名的求未知数的问题,得到方程,这个方程的特点 就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错, 再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为 整数,使解方程中的计算方便些。 在解方程中去分母时,我发现存在这样的一些问题:① 部分学生不会找各分母的最小公倍数,#p#副标题#e#这点要适当指导,② 用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到 5×3x +1-10×2 = 3x -2-2× 2x +3其中3x +1, 2x +3 没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。
本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的分母化为整数的分母。如 把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
②想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
③学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在 本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能 力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备 一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说 明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问 题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。