特殊的平行四边形教学反思(2)
时间: 07-15
作者:陈燕
栏目:反思
一、注重新旧知识的延续性。
通过复习、回忆已经学矩形、菱形、正方形的性质和判定,让同学们条理更加清楚,《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。
二、创设问题情景,学生自主探究。
《数学课程标准》强调指出:“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”实施“新课标”,就是要改变以往的学生被动地接受知识的陈旧的学习方式,让学生自主学习、自主探索、自主感悟,自主解决问题。这一堂课,学生自始至终地进行自主学习、自主探索、自主感悟,自主解决问题。教师不再是知识的灌输者,教师的作用只是学生“学习的组织者、引导者与合作者”;学生也不再是接受知识的容器,而是知识的探索者、发现者。例如,在证明定理部分,提出了“你能证明它们吗”问题后,就让学生去自主思考探究,自主解决自己需要解决的问题。然后,老师“出示例题”:“已知菱形边长及一条对角线,求另一条对角线”问题,让学生自主探索求解。学生经过思考、合作探索、尝试列式求解后,终于自行解决了这一问题。而在这一学习过程中,老师只作积极的组织者和理智的引导者,不作任何的解答。
三、小组合作,自主探究。
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“怎样证明一个四边形是特殊的平行四边形”,这个问题如何回答,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。这堂课中的全班交流教学环节,不仅能使学生畅所欲言、共同发展,而且真正体现了学生是学习的主人,是学习的主体这一现代教育的主题。
四、注重数学思想方法,让学生受到数学思想的熏陶与启迪。这节课在教学过程中渗透了“变与不变”、转化等数学思想。
五、注重数学知识与生活的联系,注重培养学生的应用意识。
在学生新知巩固,知识应用拓展阶段,教师出示现实生活中的物体:方位图和交通警示牌,体现了“数学来源于生活”的理念,同时也突出了“数学注重应用”的理念。
六、不足之处
(1)在“想一想”出示“怎样由对角线的关系判别中点四边形?”这个问题后,只给学生讨论,没有花费时间去证明以及做练习,造成课后作业错误比较多。(2)例题后的总结语句太少,这也是我听老教师课后最大的体会。在以后的教学中必须注重习题前后的分析与总结,这一部分有益于学生知识的掌握。
反思四:特殊的平行四边形教学反思
“中点四边形”九年级下册的一个课题学习内容。本节课先引出中点四边形的定义,然后安排学生分组探索:(1)任意四边形的中点四边形的形状(2)特殊四边形的中点四边形的形状?(3)设计了一个已知中点四边形的形状,那么对原四边形有何要求? 上完这节课后,我从教学设计、学生学习方式、教学重难点的落实、学生学习情况的把握四个方面做了反思:
(一)本节课的设计较为合理,安排比较紧凑。“问题是数学的心脏”。本节课由问题“为什么说任意四边形的中点四边形都是平行四边形” 的解决引入,再运用新知识来探索“特殊四边形的中点四边形的特殊性”。学生的注意力随着问题的提出和学习的深入而得到不断加强和调节,学生整节课的学习热情比较高。
通过复习、回忆已经学矩形、菱形、正方形的性质和判定,让同学们条理更加清楚,《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。
二、创设问题情景,学生自主探究。
《数学课程标准》强调指出:“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”实施“新课标”,就是要改变以往的学生被动地接受知识的陈旧的学习方式,让学生自主学习、自主探索、自主感悟,自主解决问题。这一堂课,学生自始至终地进行自主学习、自主探索、自主感悟,自主解决问题。教师不再是知识的灌输者,教师的作用只是学生“学习的组织者、引导者与合作者”;学生也不再是接受知识的容器,而是知识的探索者、发现者。例如,在证明定理部分,提出了“你能证明它们吗”问题后,就让学生去自主思考探究,自主解决自己需要解决的问题。然后,老师“出示例题”:“已知菱形边长及一条对角线,求另一条对角线”问题,让学生自主探索求解。学生经过思考、合作探索、尝试列式求解后,终于自行解决了这一问题。而在这一学习过程中,老师只作积极的组织者和理智的引导者,不作任何的解答。
三、小组合作,自主探究。
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“怎样证明一个四边形是特殊的平行四边形”,这个问题如何回答,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。这堂课中的全班交流教学环节,不仅能使学生畅所欲言、共同发展,而且真正体现了学生是学习的主人,是学习的主体这一现代教育的主题。
四、注重数学思想方法,让学生受到数学思想的熏陶与启迪。这节课在教学过程中渗透了“变与不变”、转化等数学思想。
五、注重数学知识与生活的联系,注重培养学生的应用意识。
在学生新知巩固,知识应用拓展阶段,教师出示现实生活中的物体:方位图和交通警示牌,体现了“数学来源于生活”的理念,同时也突出了“数学注重应用”的理念。
六、不足之处
(1)在“想一想”出示“怎样由对角线的关系判别中点四边形?”这个问题后,只给学生讨论,没有花费时间去证明以及做练习,造成课后作业错误比较多。(2)例题后的总结语句太少,这也是我听老教师课后最大的体会。在以后的教学中必须注重习题前后的分析与总结,这一部分有益于学生知识的掌握。
反思四:特殊的平行四边形教学反思
“中点四边形”九年级下册的一个课题学习内容。本节课先引出中点四边形的定义,然后安排学生分组探索:(1)任意四边形的中点四边形的形状(2)特殊四边形的中点四边形的形状?(3)设计了一个已知中点四边形的形状,那么对原四边形有何要求? 上完这节课后,我从教学设计、学生学习方式、教学重难点的落实、学生学习情况的把握四个方面做了反思:
(一)本节课的设计较为合理,安排比较紧凑。“问题是数学的心脏”。本节课由问题“为什么说任意四边形的中点四边形都是平行四边形” 的解决引入,再运用新知识来探索“特殊四边形的中点四边形的特殊性”。学生的注意力随着问题的提出和学习的深入而得到不断加强和调节,学生整节课的学习热情比较高。