初中教师业务学习材料(6)

时间: 04-11 作者:易旺 栏目:事迹材料

例如,对于“长方体的体积=长×宽×高”,如果学生通过背诵记住这一公式,那么他获得的知识仅仅是“事实性知识”。

如果学生通过拼摆单位小正方体而得到“大长方体”的体积就是单位小正方体的个数,即数小正方体的个数就能求出长方体的体积,但是“数”比较麻烦,再进一步发现大长方体的体积是“长×宽×高”,这时他对长方体体积公式的理解就达到“概念性水平”。

如果学生能进一步深入分析,就会发现长方体的体积与长方体的一个面的面积以及对应这个面的高有关。在教师的引导下,学生综合应用所学知识,得出长方体的体积还可以通过“一个面的面积乘以这个面所对应的高”来求出,这时学生对该公式的理解就达到了“方法性水平”,因为这个公式不仅仅适用于长方体而且适用于一切柱体。学生不但了解了公式产生的来龙去脉,并且能在所涉及的概念与概念之间,以及概念与已有的经验之间建立起联系,并能根据不同的条件灵活选择公式解决问题。

在此基础上,学生还能进一步解释“长方体的体积等于一个面的面积乘以这个面上的高”吗?在教学中,有个学生这样回答:我把长方体看成是“底面”这样的小薄片一片一片垒起来的,那么长方体的体积不就是这个“小薄片”的面积乘以垒的“高度”吗?这名学生所获得的知识就已经达到了“主体性水平”,他所获得的这一知识,是通过反思“创造”出来的。

学生学习数学时,往往停留在“事实性水平”的理解上。在教学中,我们必须辨别出学生的理解所达到的程度,设计恰当活动促进学生对知识的高水平理解。

有过程的教学促进学生高水平的理解

“数学是系统化了的常识。”小学数学中的很多概念都蕴含了朴素的数学思想,基本上都来源于学生的生活经验。从理论上说,学生认识这些朴素的思想应该很容易,但为什么学生学习“课本上的数学”就有很多困难呢?

原因主要在于数学的学科定义高度概括、抽象,教材不易呈现其形成与发展的过程,直接学习现成的结论不符合小学生的思维水平与认知特点。因此,弗罗登塔尔认为“教材是教学法的颠倒”。如果教师的教学没有过程,而只是简单的模仿、记忆、背诵、训练,则容易使学生的理解仅仅处于事实性水平。

教师无过程教学的根源主要有两点:一是缺少追问学科概念的本质,二是没有真正了解学生的思维特点与已有的知识经验储备。对于前者,我们强调教师追问为什么学习这些内容、所学习内容的核心是什么、如何建立联系;后者主要包括学生的生活概念、学生的思维水平与认知特点及学生已有的知识储备。当教师对这两个根源有深入的思考后就能设计出有过程的教学。

设计有过程的教学,需要教师关注数学概念、思想的本质以及发展的历史本源,关注其形成、发展的原始动力,关注学生朴素的问题与思维过程,关注学生的生活概念、经验与数学概念之间的本质联系与区别,关注学生的思维过程,利用思维过程中的冲突、质疑与障碍使学生获得高水平理解力,激发学生学习的愿望与动机,体会到创造的乐趣。

下面是一位教师教学“减法的初步认识”时发生的主要事件,该课就是一节过程充分的课:

教师先利用电脑动画设计了一个停车场的情境,学生很快发现了信息并提出了问题:停车场原来有5辆小汽车,开走了2辆,问停车场还剩几辆小汽车?学生顺利地列出算式并计算。教师请学生利用手中的学具,自己动手创造一个用减法解决的问题,并列式解决。这一环节的设计目的是让每个学生都亲历减法意义的感知过程,并板书出学生所出现的各种不同的减法算式,为后续观察、比较、总结减法的意义作素材准备。
为你推荐