用坐标表示平移教学反思

时间: 03-27 作者:魏啸宸 栏目:反思
用坐标表示平移教学反思一:

    上星期我上了一节《用坐标表示平移》的公开课,本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的。主要是引导学生运用分类思想,依次经过点和图形的平移的观察、画图、猜想、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系,图形各个点的坐标变化与图形平移的关系。
    我在学生的前置性学习部分让学生将点a(-2,-3)向右平移5个单位长度,它的坐标是什么?通过思考,学生可以验证观察后的推断。然后把点a分别向左平移2个单位、向上平移6个单位、点a向下平移4个单位。通过以上环节,大多数学生都会发现点平移的规律,进而归纳出点平移与坐标的变化规律,对于学习有困难的学生,可通过小组讨论、其他同学的帮助得到点平移与坐标的变化规律。在这一分层递进教学环节中,四人学习小组大提高了学生的参与率(尤其是基础较差的学生)改变了以前有少部分参与而大部分学生做“观众”的课堂氛围,进而激发了学生学数学的爱好和进一步学习的愿望。四人学习小组中,学生能充分发挥互助精神,好生辅导差生,学生用他自己的语言教学生,可使部分学生比听老师讲更容易接受,可帮助基础差的学生及时解决问题。
    学生通过观察、合作交流等实践活动,经历了从特殊到一般、从具体到抽象的探索过程,最终归纳总结点平移与坐标变化的规律就相对简单了。在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)。为了方便学生记忆,我还在结论的后面总结了一句口诀:左右平移,左减右加纵不变;上下平移,上加下减横不变。通过口诀的记忆,学生在运用的时候可以更快、更准确地解决问题。在这个知识点后,我设计了5个有梯度的练习题,大部分学生都能轻松地解决了这5个习题。
    在这个知识点我还设计了一个思考题:在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。这个问题的出现这个问题的出现就是为了使学生发现斜向平移可以分解为水平平移和垂直平移来完成。将点平移的知识提高了一个层次,也体现了知识由浅到深,由简到繁的过程,能拓宽学生的思路,同时也为图形的斜向平移埋下伏笔。但显然,部分学生不大理解我的设计意图,有的学生通过绕很多路线才平移到点(-2,-2)。故在这一问题上,我认为我处理得有点不当,引导得不够好。
    学生已经掌握了点平移与坐标之间的变化关系,然后再学习图形平移与图形个点之间坐标变化的关系就相对简单多了。在这一知识点的处理上我让学生做了大量的练习,增强了学生对这一知识点的熟悉。
    为了调动学生积极参与学习的全过程,各层次的学生都能通过听课、练习、等环节学习知识并在课堂上找到展示自己成果的机会,我在这节课的最后一个环节设计了分层的练习,保证每个学生每节课都有成功的体验。学生只有有成功感才能对学习有持续的兴趣。但在操作过程中本人还存在一定的困惑,因为在评讲各层次学生的练习时,基础差的学生根本听不懂,或无事可做,或在做练习,但因为老师在讲课,所以很多学生的注意力无法集中。这时候这些同学的时间就呈一个轮空状态,那究竟如何操作才能使得这些学生充分利用好这段时间呢?
为你推荐