分式方程教学反思(2)

时间: 02-27 作者:严敬 栏目:反思
    2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
    3. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
    4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
    在教学方法上,我采用类比渗透思想方法进行教学,通过与一元一次方程解法相比较,启发引导学生自主探究、归纳分式方程的解法。运用类比教学法具有以下三方面的优点:
    1.通过复习一元一次方程的解法,学生在探究、归纳分式方程解法的同时进行类比,让学生在解分式方程时有法可循,而不会觉得无从下手。
    2.把分式方程的解法与一元一次方程的解法进行相比较,让学生既可以温习旧知识,又可以加深对新知识的记忆。
    3.通过对一元一次方程和分式方程解法的类比,更能突显分式方程解法中验根的重要性。


分式方程教学反思三:

    一、要创造性地使用教材
    教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。 二、相信学生并为学生提供充分展示自己的机会
    学生已经学习了一元一次方程中的未知数的系数是分数形式的整式方程,也学习了分式有意义的条件及通分;教师要大胆地放手让学生自己去探究分式方程的解法及分式方程检验的必要性。三、注意改进的地方
    讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。


分式方程教学反思四:

    在本课的教学过程中,我认为应从这样的几个方面入手:   
    1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。   
    2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。   
    3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母   
    4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。


分式方程教学反思五:

    设计思路:本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。
为你推荐