高三数学二轮复习计划(6)

时间: 06-15 作者:赵晓茹 栏目:工作计划

(1)函数的性质,如单调性、奇偶性、周期性、对称性等,多以具体函数及图象的几何直观展开,也适度考查抽象函数。

(2)一元二次函数,则是重中之重,函数值域(最值),以及转化为二次函数的值域,特别是含参变量的二次函数值域的研讨为重点;方法以突出配方法、换元法和基本不等式法为重点,二次函数零点的分布,二次不等式解的讨论,二次曲线交点问题等都与此相关。

(3)对于不等式证明,与函数联系的、与数列综合的是重点,在掌握比较法和基本不等式法的基础上,掌握几种简单的放和缩的技巧是必要的。

第二,数列,以等差、等比两种基本数列为载体考查数列的通项、求和、应用与极限等为重点。应突出“基本量”的思想和转换与化归的方法,对于递推式给出的数列,可用“归纳--猜想--证明”的方法。

第三,三角函数的考查,高考已采取了给出“积和互化公式”的模式,且考题多为中难度,训练中重在“变换”与“求值”,狠抓基本公式的熟练运用:正用、逆用、变用及三角换元时用。

第四,概率与统计,近两年有下降趋势,训练题型、方法、难度等,以达到或略高于教材水准即可,要重视与实际应用问题相结合。

第五,从全国考试大纲看,立体几何应当“两条腿走路”:既能用传统的合情推理,也能用新增的向量法求解!但我们万州主要使用九(a)教材,以传统几何法为主进行复习。

(1)突出“空间”、“立体”,即把线线、线面、面面位置关系的考查置于某几何体中,棱柱以三棱柱、正方体为重点,棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体应予以重视。空间直线与平面的位置关系以判断和证明垂直为重点,重视三垂线定理及逆定理的灵活运用,

(2)空间角以二面角为重点,熟悉三种找二面角的常用方法。空间距离以点面距、线面距为重点,等面积或等体积法是最常用的。计算面积和体积,则以解答题居多,求法灵活,思路宽广。

第六,解析几何以基本性质、基本运算为目标。客观题照顾面,解答题较综合,突出直线和圆锥曲线的交点、弦长、轨迹等,要注重与函数、数列、三角等内容的联系。

2.把握四大数学思想方法

明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想渗透到问题中去思考与讲评。

数学家华罗庚先生说:数学是一个原则,无数内容,一种方法,到处可用。华罗庚先生还一再倡导读书要把书读得由薄到厚,再由厚到薄。假如说我们从小学到中学学习12年数学的过程是由薄到厚的过程,那么复习的过程应该是深刻领会数学的内容、意义和方法,认真梳理、归纳、探究、总结、提炼,把握规律、灵活运用,把数学学习变得由厚变薄的过程,变成数学成为我们培养科学精神,把握科学方法的最有效的工具,成为自己做高素质现代人的重要武器。那时,做数学题就会得心应手。

第二,提高模拟练习效果,二轮复习中不论课堂上还是作业或是周末,都要进行模拟练习,模拟练习效果直接关系到最后的成绩。

a、明确模拟练习的目的。二轮复习中老师将有计划地从知识、方法、策略上进行系统的训练和检测,借以强化重点知识和方法,考生则一要检测知识的全面性,方法的熟练性和运算的准确性,发现自己的某些不足或空白,以求复习时有的放矢;二要在平时考试中练就考试技能技巧,学会合理安排时间,达到既快又对;三要提高应试的心理素质,能够在任何状况下都心态平和,保证大脑对试题的兴奋度。

为你推荐